Knizhnik-Zamolodchikov equations and the Calogero-Sutherland-Moser integrable models with exchange terms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 283533
(http://iopscience.iop.org/0305-4470/28/12/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:09

Please note that terms and conditions apply.

Knizhnik-Zamolodchikov equations and the Calogero-Sutherland-Moser integrable models with exchange terms

C Quesne† \ddagger
Physique Nucléaire Theorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

Received 9 March 1995°

Abstract

It is shown that from some solutions of generalized Knizhnik-Zamolodchikov equations one can construct eigenfunctions of the Calogero-Sutherland-Moser Hamiltonians with exchange terms, which are characterized by any given permutational symmetry under particle exchange. This generalizes some results previous!y derived by Matsuo and Cherednik for the ordinary Calogero-Sutherland-Moser Hamiltonians.

1. Introduction

Recently, much attention has been paid to the Calogero-Sutherland-Moser (CSM) integrable systems [1-3] both in field-theoretical and in condensed-matter contexts. They are indeed relevant to several apparently disparate physical problems, such as fractional statistics and anyons [4], spin chain models [5], soliton wave propagation [6], two-dimensional nonperturbative quantum gravity and string theory [7], and two-dimensional QCD [8].

Such one-dimensional integrable systems consist of N non-relativistic particles interacting through two-body potentials of the inverse square type and its generalizations, and are related to root systems of \mathcal{A}_{N-1} algebras [9]. Their spectra and wavefunctions can be obtained by simultaneously diagonalizing a set of N commuting first-order differential operators, first considered by Dunkl in the mathematical literature [10], and later rediscovered by Polychronakos [11] and Brink et al [12]. The use of Dunkl operators leads to Hamiltonians with exchange terms, related to the spin generalizations of the CSM models [13].

Dunkl operators are rather similar [14] to the differential operators of the KnizhnikZamolodchikov (KZ) equations, which first appeared in conformal field theory [15]. Matsuo [16] and Cherednik [17] proved that from some solutions of the KZ equations, one can construct wavefunctions for the (ordinary) CSM systems. Such relations between KZ equations and CSM systems were then exploited by Felder and Veselov [18] to provide a natural interpretation for the shift operators of the latter.

The purpose of the present paper is to extend the results of Matsuo and Cherednik to some CSM models with exchange terms. In the following section, we review generalized KZ equations. Then, in section 3, we establish new links between some of their solutions

[^0]and wavefunctions of corresponding CSM models with exchange terms. Finally, section 4 contains the conclusion.

2. Generalized Knizhnik-Zamolodchikov equations

Let us consider a system of N first-order partial differential equations of the type
$\partial_{i} \Phi=\left(\sum_{j \neq i}\left(f_{i j}\left(x_{i}-x_{j}\right) P^{(i j)}+c T^{(i j)}\right)+\lambda^{(i)}\right) \Phi \quad i=1,2, \ldots, N$
where $\Phi=\Phi\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ takes values in the tensor product $V \otimes V \otimes \cdots \otimes V=V^{\otimes N}$ of some N-dimensional vector space $V, f_{i j}\left(x_{i}-x_{j}\right)$ is a function of $x_{i}-x_{j}$ and c is a complex parameter. Equation (1) also contains three operators $P^{(i j)}, T^{(i j)}$ and $\lambda^{(i)}$, defined as in [18], i.e. $\lambda^{(i)}$ is the operator in $V^{\otimes N}$ acting on the i th factor as the diagonal matrix $\lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and identically on all other factors, P is the permutation: $P(a \otimes b)=b \otimes a, T$ is the following operator on $V \otimes V$:

$$
\begin{equation*}
T=\sum_{k>l}\left(E_{k l} \otimes E_{l k}-E_{l k} \otimes E_{k l}\right) \tag{2}
\end{equation*}
$$

where $E_{k l}$ denotes the $N \times N$ matrix with entry 1 in row k and column l and zeros everywhere else and $P^{(i j)}$ and $T^{(i j)}$ are the corresponding operators in $V^{\otimes N}$ acting only on the i th and j th factors. When $\lambda_{i}=c=0$ and $f_{i j}\left(x_{i}-x_{j}\right)=k\left(x_{i}-x_{j}\right)^{-1}$, the set of equations (1) coincides with that derived by Knizhnik and Zamolodchikov in conformal field theory [15]. We shall therefore refer to (1) as generalized $K Z$ equations.

Let us consider the case where Φ has the form

$$
\begin{equation*}
\Phi=\sum_{\sigma \in S_{N}} \Phi_{\sigma} e_{\sigma} \quad e_{\sigma}=e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(N)} \tag{3}
\end{equation*}
$$

where S_{N} is the symmetric group and e_{k} denotes a column vector with entry 1 in row k and zeros everywhere else. The operators $P^{(i j)}, T^{(i j)}$ and $\lambda^{(i)}$ transform the components Φ_{σ} into $\Phi_{\sigma \circ p_{j},}, \tau_{\sigma}^{(i j)} \Phi_{\sigma \circ p_{i j}}$ and $\lambda_{\sigma(i)} \Phi_{\sigma}$, respectively, where $p_{i j} \in S_{N}$ is the transposition of i and j and $\tau_{\sigma}^{(i j)} \equiv \operatorname{sgn}(\sigma(i)-\sigma(j))$ satisfies the relations

$$
\begin{align*}
& \tau_{\sigma}^{(i j)}=-\tau_{\sigma a p_{1}}^{(i j)}=-\tau_{\sigma}^{(j i)} \quad \tau_{\sigma o p i j}^{(i k)}=\tau_{\sigma}^{(j k)} \quad \tau_{\sigma o p i j}^{(k l)}=\tau_{\sigma}^{(k l)} \\
& \tau_{\sigma}^{(i j)} \tau_{\sigma}^{(i k)}+\tau_{\sigma}^{(j k)} \tau_{\sigma}^{(j i)}+\tau_{\sigma}^{(k i)} \tau_{\sigma}^{(k j)}=1 \tag{4}
\end{align*}
$$

for any $i \neq j \neq k \neq l$. Hence, for such functions Φ, equation (1) is equivalent to the set of equations
$\partial_{i} \Phi_{\sigma}=\sum_{j \neq i}\left(f_{i j}\left(x_{i}-x_{j}\right)+c \tau_{\sigma}^{(i j)}\right) \Phi_{\sigma \circ p_{i j}}+\lambda_{\sigma(i)} \Phi_{\sigma} \quad i=1,2, \ldots, N$
where σ is an arbitrary permutation of S_{N}.
The integrability conditions of (5), i.e. $\partial_{j} \partial_{i} \Phi_{\sigma}=\partial_{i} \partial_{j} \Phi_{\sigma}$ for any $i, j=1,2, \ldots, N$, and any $\sigma \in S_{N}$, are satisfied if and only if

$$
\begin{equation*}
f_{i j}\left(x_{i}-x_{j}\right)=-f_{j i}\left(x_{j}-x_{i}\right) \tag{6}
\end{equation*}
$$

$f_{i j}\left(x_{i}-x_{j}\right) f_{j k}\left(x_{j}-x_{k}\right)+f_{j k}\left(x_{j}-x_{k}\right) f_{k i}\left(x_{k}-x_{i}\right)+f_{k i}\left(x_{k}-x_{i}\right) f_{i j}\left(x_{i}-x_{j}\right)=-c^{2}$
for any $i, j, k=1,2, \ldots, N$, such that $i \neq j \neq k$. By taking (6) into account, equation (7) can be rewritten as

$$
\begin{equation*}
f_{i j}(u) f_{j k}(v)-f_{i k}(u+v)\left[f_{i j}(u)+f_{j k}(v)\right]=-c^{2} \tag{8}
\end{equation*}
$$

It is sufficient to consider the latter for $1 \leqslant i<j<k \leqslant N$, since the relations corresponding to different orderings of i, j, k directly follow from them.

Equation (8) looks like a functional equation first considered by Sutherland [2] and solved by Calogero [19] through a small-x expansion. By using a similar procedure, all the solutions of (8) that are odd and meromorphic in a neighbourhood of the origin can easily be derived. Denote by $F(u)$ and $G(u)$ the functions

$$
F(u)= \begin{cases}k \omega \operatorname{coth} \omega u & \text { if } c^{2}=k^{2} \omega^{2}>0 \tag{9}\\ k / u & \text { if } c^{2}=0 \\ k \omega \cot \omega u & \text { if } c^{2}=-k^{2} \omega^{2}<0\end{cases}
$$

and

$$
G(u)= \begin{cases}k \omega \tanh \omega u & \text { if } c^{2}=k^{2} \omega^{2}>0 \tag{10}\\ -k \omega \tan \omega u & \text { if } c^{2}=-k^{2} \omega^{2}<0\end{cases}
$$

where $\omega \in \mathbb{R}^{+}$. For any $N \geqslant 3$ and $c^{2} \neq 0$, one finds that equation (8) has two and only two types of odd, meromorphic solutions, namely

$$
\begin{equation*}
f_{i j}(u)=f_{j i}(u)=F(u) \quad 1 \leqslant i<j \leqslant N \tag{11}
\end{equation*}
$$

and
$f_{i j}(u)=f_{j i}(u)= \begin{cases}F(u) & \text { if } 1 \leqslant i<j \leqslant N_{\mathrm{I}} \text { or } N_{\mathrm{I}}+1 \leqslant i<j \leqslant N \\ G(u) & \text { if } 1 \leqslant i \leqslant N_{\mathrm{I}} \text { and } N_{\mathrm{I}}+1 \leqslant j \leqslant N\end{cases}$
where in (12), N_{1} may take any value in the set $\{1,2, \ldots, N-1\}$. Moreover, for any $N \geqslant 3$ and $c^{2}=0$, equation (8) has one and only one odd, meromorphic solution, given by (11). Both solutions (11) and (12) are well known and describe either particles of the same type or of two different types [19].

It should be noted that equation (8) also has some singular solutions, such as
$f_{i j}(u)=f_{j i}(u)=c \operatorname{sgn}(u)=c[\theta(u)-\theta(-u)] \quad \cdot 1 \leqslant i<j \leqslant N$
where $\theta(u)$ denotes the Heaviside function.

3. Solutions of Calogero-Sutherland-Moser models with exchange terms

From a set of N ! functions $\Phi_{\sigma}\left(x_{1}, \ldots, x_{N}\right), \sigma \in S_{N}$, satisfying equation (5), one can in general construct N ! functions $\varphi_{r s}^{[f]}\left(x_{1}, \ldots, x_{N}\right)$, defined by

$$
\begin{equation*}
\varphi_{r s}^{[f]}=\sum_{\sigma \in S_{N}} V_{r s}^{[f]}(\sigma) \Phi_{\sigma} \tag{14}
\end{equation*}
$$

where $[f] \equiv\left[f_{1} f_{2} \ldots f_{N}\right]$ runs over all N-box Young diagrams, r and s label the standard tableaux associated with $[f]$, arranged in lexicographical order, and $V_{r s}^{[f]}(\sigma)$ denotes Young's orthogonal matrix representation of $S_{N}[20]$. Such functions $\varphi_{r s}^{[f]}$ satisfy the system of equations

$$
\begin{gather*}
\partial_{i} \varphi_{r s}^{[f]}=\sum_{j \neq i} f_{i j} \sum_{i} \varphi_{r t}^{[f]} V_{t s}^{[f]}\left(p_{i j}\right)-c \sum_{j \neq i} \sum_{t}\left(\sum_{\sigma} \tau_{\sigma}^{(i j)} V_{r t}^{[f]}(\sigma) \Phi_{\sigma}\right) V_{t s}^{[f]}\left(p_{i j}\right) \\
+\sum_{\sigma} \lambda_{\sigma(i)} V_{r s}^{[f]}(\sigma) \Phi_{\sigma} \quad i=1,2, \ldots, N . \tag{15}
\end{gather*}
$$

In deriving (15), use has been made of the first of the following representation properties of $V_{r s}^{[f]}(\sigma)$:

$$
\begin{equation*}
V_{r s}^{[f]}\left(\sigma \circ \sigma^{\prime}\right)=\sum_{i} V_{r l}^{[f]}(\sigma) V_{t s}^{[f]}\left(\sigma^{\prime}\right) \quad V_{r s}^{[f]}(1)=\delta_{r, s} \tag{16}
\end{equation*}
$$

and of the first equality in (4).
From (15), one has that

$$
\begin{align*}
& \partial_{i i}^{2} \varphi_{r s}^{[f]}=\sum_{j \neq i}\left(\partial_{i} f_{i j}\right) \sum_{t} \varphi_{r t}^{[f]} V_{t s}^{[f]}\left(p_{i j}\right)+\sum_{j \neq i} f_{i j} \sum_{t}\left(\partial_{i} \varphi_{r t}^{[f]}\right) V_{t s}^{[f]}\left(p_{i j}\right) \\
&-c \sum_{j \neq i} \sum_{i}\left(\sum_{\sigma} \tau_{\sigma}^{(i j)} V_{r t}^{[f]}(\sigma) \partial_{i} \Phi_{\sigma}\right) V_{t s}^{[f]}\left(p_{i j}\right) \\
&+\sum_{\sigma} \lambda_{\sigma(i)} V_{r s}^{[f]}(\sigma) \partial_{i} \Phi_{\sigma}^{-} \tag{17}
\end{align*}
$$

By using (4), (5), (15) and (16) again, and by summing over i, we obtain the following result for the Laplacian of $\varphi_{r s}^{[f]}$:

$$
\begin{align*}
\Delta \varphi_{r s}^{[f]}=\varphi_{r s}^{[f]} & \left(\sum_{\substack{i, j \\
i \neq j}}\left(f_{i j}^{2}-c^{2}\right)+\sum_{i} \lambda_{i}^{2}\right) \\
& +\sum_{t} \varphi_{r t}^{[f]}\left(\sum_{\substack{i, j \\
i \neq j}}\left(\partial_{i} f_{i j}\right) V_{t s}^{[f]}\left(p_{i j}\right)+\sum_{\substack{i, j, k \\
i \neq j \neq k}} f_{i j} f_{i k} V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)\right) \\
& -c \sum_{\sigma} \sum_{t} V_{r t}^{[f]}(\sigma)\left(\sum_{\substack{i, j, k \\
i \neq j \neq k}}\left(f_{i j} \tau_{\sigma}^{(i k)}+f_{i k} \tau_{\sigma}^{(k j)}\right) V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)\right) \Phi_{\sigma} \\
& +\sum_{\sigma} \sum_{t} V_{r t}^{[f]}(\sigma)\left(\sum_{\substack{i, j \\
i \neq j}}\left(\lambda_{\sigma(i)}+\lambda_{\sigma(j)}\right) f_{t j} V_{t s}^{[f]}\left(p_{i j}\right)\right) \Phi_{\sigma} \\
& +c^{2} \sum_{\sigma} \sum_{t} V_{r t}^{[f]}(\sigma)\left(\sum_{\substack{i, j, k \\
i \neq j \neq k}} \tau_{\sigma}^{(i k)} \tau_{\sigma}^{(k j)} V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)\right) \Phi_{\sigma} \\
& -c \sum_{\sigma} \sum_{t} V_{r t}^{[f]}(\sigma)\left(\sum_{\substack{i, j \\
i \neq j}}\left(\lambda_{\sigma \sigma(i)}+\lambda_{\sigma(j)}\right) \tau_{\sigma}^{(j j)} V_{t s}^{[f]}\left(p_{i j}\right)\right) \Phi_{\sigma} \tag{18}
\end{align*}
$$

We shall now proceed to evaluate the various terms on the right-hand side of (18).
As

$$
\begin{equation*}
p_{i k} \circ p_{i j}=p_{i j} \circ p_{j k}=p_{j k} \circ p_{i k} \tag{19}
\end{equation*}
$$

the last part of the second term becomes

$$
\begin{align*}
\sum_{\substack{i, j, k \\
i \neq j \neq k}} f_{i j} f_{i k} & V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right) \\
& =\sum_{\substack{i, j, k \\
i<j<k}}\left(f_{i j} f_{i k}+f_{j k} f_{j i}+f_{k i} f_{k j}\right)\left(V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)+V_{t s}^{[f]}\left(p_{i j} \circ p_{i k}\right)\right) \\
& =c^{2} \sum_{\substack{i, j, k \\
i<j<k}}\left(V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)+V_{t s}^{[f]}\left(p_{i j} \circ p_{i k}\right)\right) \tag{20}
\end{align*}
$$

where in the last step we used the integrability conditions (6) and (7) of (5). By applying (19) again, the summation over i, j, k in the third term on the right-hand side of (18) can be rewritten as

$$
\begin{align*}
\sum_{\substack{i, j, k \\
i \neq j \neq k}}\left(f_{i j} \tau_{\sigma}^{(i k)}\right. & \left.+f_{i k} \tau_{\sigma}^{(k j)}\right) V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right) \\
= & \sum_{\substack{i, j, k \\
i<j<k}}\left(\left(\left(f_{i j}+f_{j i}\right) \tau_{\sigma}^{(i k)}+\left(f_{j k}+f_{k j}\right) \tau_{\sigma}^{(j i)}+\left(f_{k i}+f_{i k}\right) \tau_{\sigma}^{(k j)}\right) V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)\right. \\
& \left.+\left(\left(f_{i j}+f_{j i}\right) \tau_{\sigma}^{(j k)}+\left(f_{j k}+f_{k j}\right) \tau_{\sigma}^{(k i)}+\left(f_{k i}+f_{i k}\right) \tau_{\sigma}^{(i j)}\right) V_{t s}^{[f]}\left(p_{i j} \circ p_{i k}\right)\right) \tag{21}
\end{align*}
$$

and therefore vanishes owing to the antisymmetry of $f_{i j}$ in i, j, as shown in (6). The same is true for the summations over i, j in the fourth and sixth terms as a consequence of the antisymmetry of $f_{i j}$ and $\tau_{\sigma}^{(i j)}$, respectively. Finally, by successively using (19) and (4), the summation over i, j, k in the fifth term becomes

$$
\begin{align*}
& \sum_{\substack{i, j, k \\
i \neq j \neq k}} \tau_{\sigma}^{(i k)} \tau_{\sigma}^{(k j)} V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right) \\
&= \sum_{\substack{i, j, k \\
i<j<k}}\left(\left(\tau_{\sigma}^{(j i)} \tau_{\sigma}^{(i k)}+\tau_{\sigma}^{(k j)} \tau_{\sigma}^{(j i)}+\tau_{\sigma}^{(i k)} \tau_{\sigma}^{(k j)}\right) V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)\right. \\
&\left.+\left(\tau_{\sigma}^{(k i)} \tau_{\sigma}^{(i j)}+\tau_{\sigma}^{(i j)} \tau_{\sigma}^{(j k)}+\tau_{\sigma}^{(j k)} \tau_{\sigma}^{(k i)}\right) V_{t s}^{[f]}\left(p_{i j} \circ p_{i k}\right)\right) \\
&=-\sum_{\substack{i, j, k \\
i<j<k}}\left(V_{t s}^{[f]}\left(p_{i k} \circ p_{i j}\right)+V_{t s}^{[f]}\left(p_{i j} \circ p_{i k}\right)\right) \tag{22}
\end{align*}
$$

By putting all results together, the Laplacian of $\varphi_{r s}^{[f]}$ takes the simple form
$\Delta \varphi_{r s}^{[f]}=\left(\sum_{\substack{i, j \\ i \neq j}}\left(f_{i j}^{2}\left(x_{i}-x_{j}\right)+\left(\partial_{i} f_{i j}\left(x_{i}-x_{j}\right)\right) K_{i j}-c^{2}\right)+\sum_{i} \lambda_{i}^{2}\right) \varphi_{r s}^{[f]}$
where $K_{i j}=K_{j i}, 1 \leqslant i<j \leqslant N$, are some operators, whose action on $\varphi_{r s}^{[f]}$ is defined by

$$
\begin{equation*}
K_{i j} \varphi_{r s}^{[f]}=\sum_{t} \varphi_{r t}^{[f]} V_{t s}^{[f]}\left(p_{i j}\right) \tag{24}
\end{equation*}
$$

Let us emphasize that equation (23) is valid for any function $\varphi_{r s}^{[f]}$ constructed from any solution of (5) via transformation (14).

In the special cases where $[f]=[N]$ or $\left[1^{N}\right]$, since $V^{[N]}\left(p_{i j}\right)=-V^{\left[1^{N}\right]}\left(p_{i j}\right)=1$, the operators $K_{i j}$ behave as I or $-I$, respectively. Hence $\varphi^{[N]}=\sum_{\sigma} \Phi_{\sigma}$ and $\varphi^{\left[1^{N}\right]}=$ $\sum_{\sigma}(-1)^{\sigma} \Phi_{\sigma}$, where $(-1)^{\sigma}$ is the parity of permutation σ, are eigenfunctions of the operators $-\Delta+\sum_{i \neq j}\left(f_{i j}^{2} \pm \partial_{i} f_{i j}-c^{2}\right)$, where the upper (lower) sign corresponds to the former (latter). For $f_{i j}$ given in (11), these essentially fit the results of Matsuo [16] and Cherednik [17].

In the mixed symmetry cases where $[f] \neq[N],\left[1^{N}\right]$, the operators $K_{i j}$ have a nontrivial effect on the functions $\varphi_{r s}^{[f]}$. Provided the latter satisfy the conditions

$$
\begin{align*}
\varphi_{r s}^{[f]}\left(x_{1}, \ldots,\right. & \left.x_{j}, \ldots, x_{i}, \ldots, x_{N}\right) \\
& =\sum_{t} \varphi_{r t}^{[f]}\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{N}\right) V_{t s}^{[f]}\left(p_{i j}\right) \quad 1 \leqslant i<j \leqslant N \tag{25}
\end{align*}
$$

which amount to

$$
\begin{align*}
& \Phi_{\sigma}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{N}\right) \\
& \quad=\Phi_{\sigma \circ p_{i j}}\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{N}\right) \quad 1 \leqslant i<j \leqslant N \tag{26}
\end{align*}
$$

for any $\sigma \in S_{N}$, the operators $K_{i j}$ may be interpreted as permutation operators acting on the variables x_{i} and x_{j},

$$
\begin{equation*}
K_{i j} x_{j}=x_{i} K_{i j} \quad K_{i j} x_{k}=x_{k} K_{i j} \quad k \neq i, j \tag{27}
\end{equation*}
$$

It remains for us to examine under which conditions equation (5) admits solutions satisfying (26). This is readily done by differentiating both sides of (26) with respect to x_{k} and using (5) to calculate the derivatives. Equations (5) and (26) are found to be compatible if and only if all functions $f_{i j}(u), i \neq j$, coincide, hence in cases such as (11) and (13). For the former choice, equation (23) becomes

$$
\begin{equation*}
\left(-\Delta+\omega^{2} \sum_{\substack{i, j \\ i \neq j}}\left(\operatorname{csch} \omega\left(x_{\mathrm{t}}-x_{j}\right)\right)^{2} k\left(k-K_{i j}\right)+\sum_{i} \lambda_{i}^{2}\right) \varphi_{r s}^{[f]}=0 \tag{28}
\end{equation*}
$$

in the hyperbolic case $\left(c^{2}>0\right)$; similar results are obtained in the rational $\left(c^{2}=0\right)$ and trigonometric ($c^{2}<0$) cases. Hence, we did prove that from any solution of type (3), (26) of the $K z$ equations (1), with $f_{i j}$ given in (11), we can obtain eigenfunctions $\varphi_{r s}^{[f]}$ of the CSM Hamiltonians [1-3] with exchange terms [13], which are characterized by any given permutational symmetry [f] under particle coordinate exchange. To obtain wavefunctions describing an N-boson (N-fermion) system, it only remains to combine $\varphi_{r s}^{[f]}$ with a spin function transforming under the same (conjugate) irreducible representation $[f]$ ($[\tilde{f}]$) under exchange of the spin variables. A similar result is valid for the Hamiltonian with deltafunction interactions [21], corresponding to the functions $f_{i j}$ given in (13).

As a last point, we would like to mention that when restricting ourselves to solutions satisfying (26) or

$$
\begin{equation*}
K_{i j} \Phi=P^{(i j)} \Phi \quad 1 \leqslant i<j \leqslant N \tag{29}
\end{equation*}
$$

with $K_{i j}$ defined in (27), equations (5) and (1) become equivalent to
$\partial_{i} \Phi_{\sigma}=\left(\sum_{j \neq i}\left(f\left(x_{i}-x_{j}\right)+c \tau_{\sigma}^{(i j)}\right) K_{i j}+\lambda_{\sigma(i)}\right) \Phi_{\sigma} \quad i=1,2, \ldots, N$
and

$$
\begin{equation*}
\partial_{i} \Phi=\left(\sum_{j \neq i}\left(f\left(x_{i}-x_{j}\right)+c \hat{T}^{(i j)}\right) K_{i j}+\lambda^{(i)}\right) \Phi \quad i=1,2, \ldots, N \tag{31}
\end{equation*}
$$

respectively. In (31), $\hat{T}^{(i j)}$ is an operator whose action on functions (3) is given by

$$
\begin{equation*}
\hat{T}^{(i j)} \Phi=\sum_{\sigma} \tau_{\sigma}^{(i j)} \Phi_{\sigma} e_{\sigma} \tag{32}
\end{equation*}
$$

The corresponding operator \hat{T} on $V \otimes V$ may be taken as

$$
\begin{equation*}
\hat{T}=\sum_{k>l}\left(E_{k k} \otimes E_{l l}-E_{l l} \otimes E_{k k}\right) \tag{33}
\end{equation*}
$$

4. Conclusion

In the present paper, we have moved one step further towards a deeper understanding of the interplay between integrable systems and $K Z$ equations (and, therefore, conformal models). We indeed showed that the results of Matsuo and Cherednik can be generalized to provide wavefunctions, characterized by any given permutational symmetry, for some CSM models with exchange terms, once solutions of the corresponding KZ equations are known. Such models include the spin generalizations of the original Calogero and Sutherland models, as well as that with δ-function interactions.

Some interesting open questions are whether similar results may also hold true for elliptic CSM models and for integrable models related to root systems of algebras different from \mathcal{A}_{N-1}. The use of methods similar to those employed in [22] to construct generalizations of Dunkl operators might prove to be helpful in finding proper answers.

Acknowledgment

The author would like to thank T Brzeziński for some helpful discussions.

References

[1] Calogero F 1969 J. Math Phys. 10 2191, 2197; 1971 J. Math. Phys. 12 419; 1975 Lett. Nuovo Cimento 13 411
Calogero F, Ragnisco O and Marchioro C 1975 Lett. Nuovo Cimento 13383
[2] Sutherland B 1971 Phys. Rev. A 4 2019; 1972 Phys. Rev. A 5 1372; 1975 Phys. Rev. Lett. 341083
[3] Moser J 1975 Adv. Math. 161
[4] Leinaas J M and Myrheim J 1988 Phys. Rev. B 379286
Polychronakos A P 1989 Nucl. Phys. B 324 597; 1991 Phys. Lett. 264B 362
Haldane F D M 1991 Phys. Rev. Lett. 67937
[5] Haldane F D M 1988 Phys. Rev. Lett. 60 635; 1991 Phys. Rev. Lett. 661529 Shastry B S 1988 Phys. Rev. Lett. 60639
[6] Chen H H, Lee Y C and Pereira N R 1979 Phys. Fluids 22187
[7] Kazakov V A 1991 Random Suffaces and Quantum Gravity (Cargese Lectures, 1990) ed O Alvarez et al (New York: Pienum)
[8] Minahan J A and Polychronakos A P 1994 Phys. Lett. 326B 288
[9] Olshanetsky M A and Perelomov A M 1983 Phys. Rep. 94313
[10] Dunkl C F 1989 Trans. Am. Math. Soc. 311167
[11] Polychronakos A P 1992 Phys. Rev. Lett. 69703
[12] Brink L, Hansson T H and Vasiliey M A 1992 Phys. Lett. 286B 109
[13] Ha Z N C and Haldane F D M 1992 Phys. Rev. B 469359

Hikami K and Wadati M 1993 Phys. Lett. 173A. 263
Minahan J A and Polychronakos A P 1993 Phys. Lett. 302B 265
Bernard D, Gaudin M, Haldane F D M and Pasquier V 1993 J. Phys. A: Math. Gen. 265219
[14] Brink L and Vasiliev M A 1993 Mod. Phys. Lett. A 83585
[15] Knizhnik V G and Zamolodchikov A B 1984 Nucl. Phys. B 24783
[16] Matsuo A 1992 Invent. Math. 11095
[17] Cherednik I V 1991 Integration of quantum many-body problems by affine KZ equations Preprint Kyoto RIMS
[18] Felder G and Veselov A P 1994 Commun. Math. Phys. 160259
[19] Calogero F 1975 Lett. Nuovo Cimento 13507
[20] Rutherford D E 1948 Substitutional Analysis (Edinburgh: Edinburgh University Press)
[21] Lieb E H and Liniger W 1963 Phys. Rev. 1301605
Yang C N 1967 Phys. Rev. Lett. 19 1312; 1968 Phys. Rev. 1681920
[22] Buchstaber V M, Felder G and Veselov A P 1994 Elliptic Dunkl operators, root systems, and functional equations Preprint hep-th/9403178

[^0]: \dagger Directeur de recherches FNRS.
 \ddagger E-mail address: cquesne@ulb.ac.be

