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Knizhnik-Zamolodchikov equations and the 
CalogeroSutherland-Moser integrable models with 
exchange terms 

C Quesnett 
Physique Nucl& Theorique et Physique Mathhatique, Universit6 Libre de Bmelles, Campus 
de la Plaine CFZ29, Boulevard du Triomphe, B-1050 Brussels. Belgium 

Received 9 March 1995' 

Abstract. It is shown thS from some solutions of generalized Knizhn&-hoIdchikov 
equations one can construct eigenfunctions of the Calogerdutherland-Mow Hamiltonians 
with exchange terms, which "e charactmized by any given permutational symmetry under 
panicle exchange. This generalizes some. results previously derived by Matsuo and a e r e d n &  
for the ordinary CalogemSutherland-Moser Hamiltonians. 

1. Introduction 

Recently, much attention has been paid to the CalogeroSutherland-Moser (CSM) integrable 
systems 11-31 both in field-theoretical and in condensed-matter contexts. They are indeed 
relevant to several apparently disparate physical problems, such as fractional statistics and 
anyons [4], spin chain models 151, soliton wave propagation 161, two-dimensional non- 
perturbative quantum gravity and string theory [7], and two-dimmsional QCD [8]. 

Such one-dimensional integrable systems consist of N non-relativistic particles 
interacting through two-body potentials of the inverse square type and its generalizations, 
and are related to root system of AN-] algebras [9]. Their spectra and wavefunctions 
can be obtained by simultaneously diagonalizing a set of N commuting first-order 
differential operators, first considered by Dunkl in the mathematical literature [lo], and 
later rediscovered by Polychronakos 11 11 and Brink et d 1121. The use of Dunkl operators 
leads to Hamiltonians with exchange terms, related to the spin generalizations of the CSM 
models [13]. 

Dunkl operators are rather similar 1141 to the differential operators of the Knizhnik- 
Zamolodchikov (KZ) equations, which first appeared in conformal field theory 1151. 
Matsuo 1161 and Cherednik [17] proved that from some solutions of the KZ equations, 
one can construct wavefunctions for the (ordinary) CSM systems. Such relations between 
KZ equations and CSM systems were then exploited by Felder and Veselov 1181 to provide 
a natural interpretation for the shift operators of the latter. 

The purpose of the present paper is to extend the results of Matsuo and Cherednik to 
some CSM models with exchange terms. In the following section, we review generalized 
KZ equations. Then, in section 3, we establish new links between some of their solutions 
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3534 C Quesne 

and wavefunctions of corresponding C ~ M  models with exchange terms. Finally, section 4 
contains the conclusion. 

2. Generalized Knizhnik-Zamolodchiknv equations 

Let us consider a system of N first-order partial differential equations of the type 

where @ = @ ( X I ,  xz, . . . .XN)  takes values in the tensor product V @ V @ . . . @ V = VaN 
of some N-dimensional vector space V, fij(& - x j )  is a function of xi - x j  and c is 
a complex parameter. Equation (1) also contains three operators P ( l j ) ,  Tcij) and A(i), 
defined as in [NI, i.e. A(') is the operator in VeN acting on the ith factor as the diagonal 
matrix A = diag(A1, ..., AN) and identidy on all other factors, P is the permutation: 
P(a  @ b) = b @ a ,  T is the following operator on V @ V 

T = ( E k r  @ Elk - Elk @ E d  (2) 
k>l 

where &[ denotes the N x N maIiix with entry 1 in row k and column 1 and zeros everywhere 
else and P e j )  and T ( ' j )  are the corresponding operators in VaN acting only on the ith and 
j th factors. When Aj  = c = 0 and & ( x i  - nj) = k ( x i  - xj)- ' .  the set of equations (1) 
coincides with that derived by Knizhniik and Zamolodchikov in conformal field theory [15]. 
We shall therefore refer to (1) as generalized KZ equations. 

Let us consider the case where Q has the form 

@ = Que, e., = e.,(]) 8 e,@) B ... @ e,(w (3) 
U€SN 

where SN is the symmetric group and'ek denotes a column vector with entry 1 in row k 
and ZRIOS everywhere else. The operators P(jj), T ( ' j )  and A(') transform the components 

of i and j and t?) e sgn(u(i) - u ( j ) )  satisfies the relations 
a., into QuOp,,, ri')@cop,j r -  and Au(i)@u, respectively, where pjj E SN is the transposition 

= - ( i j )  - - Ui) (ik) = t i k )  (U) = (k l )  

(4) 

for any i # j + k # I .  Hence, for such functions Q, equation (1) is equivalent to the set 
of equations 

j f i  

L p r ,  - rn %qqj % %..pjj Tb 
r$j)z:k) + &ik)@) + p t ; k j )  = 1 

= ( f i j ( x j  - x i )  + c $1))  Q~~~~~ + A<(~)Q., i = 1.2, . . . , N (5) 

where U is an arbitrary permutation of SN. 
The integrability conditions of (51, i.e. ajai@., = 

and any U E S N ,  are satisfied if and only if 

h j ( X j  - X j )  = -&+j - x i )  

for any i, j = 1, 2, , .., N, 

(6) 

f i j ( X i - X j ) f i k ( n j  - X k ) f f j k ( X j - X k ) f k i ( n ~ - X i ) f f k i ( n k - X j ) f i j ( X i  - X j ) = - C *  0 
for any i, j, k = 1.2, . . ., N, such that i # j + k. By taking (6) into account equation (7) 
can be rewritten as 

(8) fi j(u)fjk(u) - fik(U + U) [ f i j b )  + &(U)] = -C2. 
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It is sufficient to consider the latter for 1 < i < j <: k < N ,  since the relations corresponding 
to different orderings of i, j, k directly follow from them. 

Equation (8) looks l i e  a functional equation first considered by Sutherland 121 and 
solved by Calogero 1191 through a small-x expansion. By using a similar procedure, all the 
solutions of (8) that are odd and meromorphic in a neighbourhood of the origin can easily 
he derived. Denote by F(u) and G(u) the functions 

kwcothwu if 9 = k202 z 0 

if c2 = 0 (9) 
kw cot wu if c2 = -k2w2 e 0 

and 
k o  tanh wu if cz = k2w2 0 

-kO tan ou if c2 = -k2w2 e 0 I G(u) = 

where OJ E 8’. For any N > 3 and c2 # 0, one finds that equation (8) has two and only 
two types of odd, meromorphic solutions, namely 

fij(u) =&;(U) = ~ F ( u )  1 < i c j < N (11) 
and 

where in (U), NI may take any value in the set { 1 , 2 ,  . . . , N - 1). Moreover, for any N > 3 
and 9 = 0, equation (8) has one and only one odd, mernmorphic solution, given by (1 1). 
Both solutions (1 1) and (12) are well known and describe either particles of the same type 
or of two different types [19]. 

It should be noted that equation (8) also has some singular solutions, such as 

fij(u) = &;(U) = csgn(u) = c [@(U) -@(-U)] ‘1 < i < j < N (13)  
where 8(u) denotes the Heaviside function. 

3. Solutions of CalogeroSutherland-Moser models with exchange terms 

From a set of N !  functions XI,. . . , X N ) ,  U e SN, satisfying equation (3, one can in 
general construct N !  functions (o, (If1 (xI,. . . , xN),  defined by 

d? = c vAfl(u)@o (14) 
VESN 

where [fl I [fi f2 . . . f ~ ]  runs over all N-box Young diagrams, r and s label the standard 
tableaux associated with [ f ] ,  arranged in lexicographical order. and V/L’(o) denotes 
Young’s orthogonal matrix representation of SN pol. Such functions q$ satisfy the system 
of equations 
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In deriving (15), use has been made of the first of the following representation properties 

Vy’(u 0 U‘) = v ,p(u)vy(u~)  V!f l ( l )  = 8r,s (16) 

of v y  (U):  

t 

and of the first equality in (4). 
From (15), one has that 

By using (4). (5), (15) and (16) again, and by summing over i ,  we obtain the following 
result for the Laplacian of qY:  

We shall now proceed to evaluate the various terms on the right-hand side of (18). 
As 

Pik 0 Pi j  = Pij 0 Pjk P jk  0 Pik (19) 
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the last part of the second term becomes 

f i j f i k v t $ f l ( P i k  0 P i j )  
i J , k  

i#j#k 

( f i j f i k  + f j k f j i  + f k i f k j ) ( V ; l f l ( P i k  0 P i j )  + v,’fl(Pij 0 P i k ) )  
i.1.k 

i C , d  

(20) 

where in the last step we used the integrability conditions (6) and (7) Of (5). By applying (19) 
again, the summation over i, j ,  k in the third term on the right-hand side of (18) can be 
rewritten as 

= c2 (Fs [fl ( p t k  , p i j )  f vt$fl(f’(pij 0 p i x ) )  
i.&k 

i C J d  

(21) 
and therefore vanishes owing to the antisymmetry of f i j  in i, j ,  as shown in (6). The same 
is true for the summations over i, j in the fourth and sixth terms as a consequence of the 
antisymmetry of f i j  and r?),~respectively. Finally, by successively using (19) and (4), the 
summation over i ,  j ,  k in the fifth term becomes 

+ ( ( f i j  + fii)r?k) + (fik + fk j )r? +(hi + f i k ) r $ j ) ) V ! f l ( P i j  0 P a )  

r$k)r~kj)v,sf’(pik o p i j )  

;2ik 

By putting all results together, the Laplacian of vi{’ takes the simple form 

where Kij = K j i ,  1 < i < j < N ,  are some operators, whose action on &I is defined by 

(24) 
~ i j ( ~ ! { ’ =  C~rt [fl 5 s  111 ( P i j ) .  
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Let us emphasize that equation (23) is valid for any function &’ constructed from any 
solution of (5) via transformation (14). 

In the special cases where [fl = [NI or [I”], since VIN1(pi j )  = -V[”l(pij) = 1, 
the operators Kij behave as I or - I ,  respectively. Hence p[”1 = E, QC and $”I = 
xu(-l)u@u, where is the parity of permutation cr. are eigenfunctions of the 
operators -A +E. .(f; f & f i j  - c’), where the upper (lower) sign corresponds to the 
former (latter). For f i i  given in (11). these essentially fit the results of Matsuo 1161 and 
Cherednik [17]. 

In the mixed symmetry cases where [f] # [NI, [l”], the operators Kij have a non- 
trivial effect on the functions &’. Provided the latter satisfy the conditions 

C’#J 

(p::’(x,, . . . , x j ,  ..., x i .  . . . , xn) 

which amount to 

@ u ( X [ ,  . . . , X j ,  . . . ,xi, . . . , X N )  

= @uopjj(x, , .  . . , x i , .  . . , x i , .  . . , X N )  1 < i < j < N (26) 
for any U E SN, the operators Kij may be interpreted as permutation operators acting on 
the variables xi and x j ,  

(27) K. .x .  - 1 . K . .  
‘J I - I ’J Kijxk =xxKij k # i , j .  

It remains for us to examine under which conditions equation (5) admits solutions 
satisfying (26). This is readily done by differentiating both sides of (26) with respect to X k  
and using (5) to calculate the derivatives. Equations (5) and (26) are found to be compatible 
if and only if all functions f i j ( u ) ,  i # j ,  coincide. hence in cases such as (11) and (13). 
For the former choice, equation (23) becomes 

in the hyperbolic case (c’ z 0); similar results are obtained in the rational (c’ = 0) and 
trigonometric (c’ < 0) cases. Hence, we did prove that from any solution of type 3), (26) 
of the KZ equations (l), with fij given in (ll),  we can obtain eigenfunctions p d  of the 
CSM Hamiltonians 11-31 with exchange terms 1131, which are characterized by any given 
permutational symmetry [ f ]  under particle coordinate exchange. To obtain wavefunctions 
describing an N-boson (N-fermion) system, it only remains to combine &’ with a spin 
function transforming under the same (conjugate) irreducible representation [f] ([TI) under 
exchange of the spin variables. A similar result is valid for the Hamiltonian with delta- 
function interactions [21], corresponding to the functions & gfven in (13). 

As a last point, we would like to mention that when restncting ourselves to solutions 
satisfying (26) or 

(29) K~,@ = P% 1 < i < j 6 N 
with Kij defined in (27), equations (5) and (1) become equivalent to 
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and 

respectively. In (31), ' f c i j )  is an operator whose action on functions (3) is given by 

The corresponding operator f on V '3 V may be taken as 

'f = C C E k k  @ Eft - Efi @EE*l). 
k>f 

(33) 

4. Conclusion 

In the present paper, we have moved one step further towards a deeper understanding of the 
interplay between integrable systems and KZ equations (and, therefore, conformal models). 
We indeed showed that the results of Matsuo and Cherednik can be generalized to provide 
wavefunctions, characterized by any given permutational symmetry, for some CSM models 
with exchange terms, once solutions of the corresponding Kz equations are known. Such 
models include the spin generalizations of the original Calogero and Sutherland models, as 
well as that with 8-function interactions. 

Some interesting open questions are whether similar results may also hold hue for elliptic 
CSM models and for integrable models related to root systems of algebras different from 
AN-, . The use of methods similar to those employed in I221 to construct generalizations 
of Dunkl operators might prove to be helpful in finding proper answers. 
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